jacquesthibs

I work primarily on AI Alignment. Scroll down to my pinned Shortform for an idea of my current work and who I'd like to collaborate with.

Website: https://jacquesthibodeau.com

Twitter: https://twitter.com/JacquesThibs

GitHub: https://github.com/JayThibs 

Sequences

On Becoming a Great Alignment Researcher (Efficiently)

Wiki Contributions

Comments

I shared the following as a bio for EAG Bay Area 2024. I'm sharing this here if it reaches someone who wants to chat or collaborate.

Hey! I'm Jacques. I'm an independent technical alignment researcher with a background in physics and experience in government (social innovation, strategic foresight, mental health and energy regulation). Link to Swapcard profile. Twitter/X.

CURRENT WORK

  • Collaborating with Quintin Pope on our Supervising AIs Improving AIs agenda (making automated AI science safe and controllable). The current project involves a new method allowing unsupervised model behaviour evaluations. Our agenda.
  • I'm a research lead in the AI Safety Camp for a project on stable reflectivity (testing models for metacognitive capabilities that impact future training/alignment).
  • Accelerating Alignment: augmenting alignment researchers using AI systems. A relevant talk I gave. Relevant survey post.
  • Other research that currently interests me: multi-polar AI worlds (and how that impacts post-deployment model behaviour), understanding-based interpretability, improving evals, designing safer training setups, interpretable architectures, and limits of current approaches (what would a new paradigm that addresses these limitations look like?).
  • Used to focus more on model editing, rethinking interpretability, causal scrubbing, etc.

TOPICS TO CHAT ABOUT

  • How do you expect AGI/ASI to actually develop (so we can align our research accordingly)? Will scale plateau? I'd like to get feedback on some of my thoughts on this.
  • How can we connect the dots between different approaches? For example, connecting the dots between Influence Functions, Evaluations, Probes (detecting truthful direction), Function/Task Vectors, and Representation Engineering to see if they can work together to give us a better picture than the sum of their parts.
  • Debate over which agenda actually contributes to solving the core AI x-risk problems.
  • What if the pendulum swings in the other direction, and we never get the benefits of safe AGI? Is open source really as bad as people make it out to be?
  • How can we make something like the d/acc vision (by Vitalik Buterin) happen?
  • How can we design a system that leverages AI to speed up progress on alignment? What would you value the most?
  • What kinds of orgs are missing in the space?

POTENTIAL COLLABORATIONS

  • Examples of projects I'd be interested in: extending either the Weak-to-Strong Generalization paper or the Sleeper Agents paper, understanding the impacts of synthetic data on LLM training, working on ELK-like research for LLMs, experiments on influence functions (studying the base model and its SFT, RLHF, iterative training counterparts; I heard that Anthropic is releasing code for this "soon") or studying the interpolation/extrapolation distinction in LLMs.
  • I’m also interested in talking to grantmakers for feedback on some projects I’d like to get funding for.
  • I'm slowly working on a guide for practical research productivity for alignment researchers to tackle low-hanging fruits that can quickly improve productivity in the field. I'd like feedback from people with solid track records and productivity coaches.

TYPES OF PEOPLE I'D LIKE TO COLLABORATE WITH

  • Strong math background, can understand Influence Functions enough to extend the work.
  • Strong machine learning engineering background. Can run ML experiments and fine-tuning runs with ease. Can effectively create data pipelines.
  • Strong application development background. I have various project ideas that could speed up alignment researchers; I'd be able to execute them much faster if I had someone to help me build my ideas fast. 

I took this post down, given that some people have been downvoting it heavily.

Writing my thoughts here as a retrospective:

I think one reason it got downvoted is that I used Claude as part of the writing process and it was too disjointed/obvious (because I wanted to rush the post out), but I didn't think it was that bad and I did try to point out that it was speculative in the parts that mattered. One comment specifically pointed out that it felt like a lot was written by an LLM, but I didn't think I relied on Claude that much and I rewrote the parts that included LLM writing. I also don't feel as strongly about using this as a reason to dislike a piece of writing, though I understand the current issue of LLM slop.

However, I wonder if some people downvoted it because they see it as infohazardous. My goal was to try to determine if photonic computing would become a big factor at some point (which might be relevant from a forecasting and governance perspective) and put out something quick for discussion rather than spending much longer researching and re-writing. I agreed with what I shared. But I may need to adjust my expectations as to what people prefer as things worth sharing on LessWrong.

I'm working on publishing a post on this and energy bottlenecks. If anyone is interested in doing a quick skim for feedback, I hope to publish it in under two hours.

Anybody know how Fathom Radiant (https://fathomradiant.co/) is doing?

They’ve been working on photonics compute for a long time so I’m curious if people have any knowledge on the timelines they expect it to have practical effects on compute.

Also, Sam Altman and Scott Gray at OpenAI are both investors in Fathom. Not sure when they invested.

I’m guessing it’s still a long-term bet at this point.

OpenAI also hired someone who worked at PsiQuantum recently. My guess is that they are hedging their bets on the compute end and generally looking for opportunities on that side of things. Here’s his bio:

Ben Bartlett I'm currently a quantum computer architect at PsiQuantum working to design a scalable and fault-tolerant photonic quantum computer. I have a PhD in applied physics from Stanford University, where I worked on programmable photonics for quantum information processing and ultra high-speed machine learning. Most of my research sits at the intersection of nanophotonics, quantum physics, and machine learning, and basically consists of me designing little race tracks for photons that trick them into doing useful computations.

Quote from Cal Newport's Slow Productivity book: "Progress in theoretical computer science research is often a game of mental chicken, where the person who is able to hold out longer through the mental discomfort of working through a proof element in their mind will end up with the sharper result."

Load More